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The hydrogen atom in an external magnetic field 

Alexander V Turbiner 
Institute for Theoretical and Experimental Physics, Moscow 1 1  7259, USSR 

Received 14 September 1982, in final form 15 July 1983 

Abstract. A quantitative analysis of two sets of excited states of hydrogen atom in an 
arbitrary constant magnetic field is carried out for the first time. A 'nonlinearisation' 
method was used. Perturbational terms up to Z 6  are calculated. It is shown that the 
domain of applicability of the perturbation theory is contracted sharply with increase in 
the atom excitation degree. The range of this domain is estimated. Functional structure 
of arbitrary correction to the wavefunction is investigated and some of its substructures 
are found explicitly. Detailed calculations are performed for magnetic fields of arbitrary 
strengths. The accuracy of the calculations is estimated. Crossovers of the levels in the 
region of fields z. lo8 G are discussed. Possible experimental consequences are considered. 

1. Introduction 

The problem of the description of the hydrogen atom in external fields is one of the 
oldest problems in quantum mechanics. Its importance is due to the fact that it arises 
in various domains of physics, in particular in semiconductor physics and in astrophysics. 
In the former case, excitons are hydrogen-like quasi-atoms with a small effective mass 
and a large dielectric constant. A description of the problem with weak fields may be 
found in any textbook on quantum mechanics (see e.g. Landau and Lifshitz 1974), so 
one might suppose that the problem is solved exhaustively in this simple case. Actually, 
the situation is not so clear; a brief review of the present state of the problem is given 
below. 

1. The Stark effect (8 # 0, a@ = 0) 

It is known that in this case the state classification is done by means of the parabolic 
and magnetic quantum numbers (e.g. Landau and Lifshitz 1974) since variables are 
separated into the parabolic coordinates. At present, the exact coefficients of the 
perturbation theory (PT) series are known up to 8'17 for any state (Silverstone 1978), 
so the problem for weak electric fields is solved completely (a review is given in 
Damburg and Kolosov 1980). 

In the case of strong fields (for the ground state the domain of strong fields is 
5E 3 0.15 au, see Dolgov and Turbiner 1980) the situation is quite indefinite; only 
the case of the ground state is investigated (see Dolgov and Turbiner (1980) and 
references therein). 
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860 A V Turbiner 

2. The Zeeman ell  ect (8  = 0, at‘ # 0) 

There is no general solution to the state classification problem. It is known only that 
the states 

n, = 0, m=*l, 

n, = 0, 
n,= 1, m=*l, 

m = * ( l -  l) ,  

are not degenerate (Avron 1981), and they are described in terms of the Coulomb 
quantum numbers; here n, is the radial quantum number, 1 is the angular momentum 
and m is the magnetic quantum number. For weak fields, besides the term linear in 
the field and describing the linear Zeeman effect, the coefficient at the field squared 
is known for these states (a discussion is given in Garstang 1977). The asymptotics 
of the PT coefficients in the field magnitude is also known (Avron 1981). 100 coefficients 
of the PT series are found for the ground state (Avron et a1 1979), and first three 
coefficients (up to the term X6) are known for lower excited states with the principal 
quantum number n = 2 (Galindo and Pascual 1976). Since the PT series has zero 
convergence radius (Avron et a1 1977, 1979, Avron 1981), the domain of applicability 
of the perturbation theory is restricted, and it is not clear now, how ample it is. Thus 
even in the case of weak fields the information on the excited state spectrum of 
hydrogen atom in a constant magnetic field is rather scant. 

In the case of strong fields, the states with n 6 3 were investigated. However, only 
the calculations of the ground state, presented in Kaschiev et a1 (1980) can be 
considered as reliable indeed; these calculations were performed with a high accuracy 
throughout the whole range of the magnetic field intensities, for which the non- 
relativistic treating is applicable. In fact, almost all other calculations (see Galindo 
and Pascual (1976) and references therein) have a restricted domain applicability and 
differ sometimes even in the first(!) significant digit. Besides, the accuracy was not 
controlled in those works, as a rule. No calculations for highly excited states were 
done until  now. 

In the present work we consider the behaviour of the hydrogen atom in constant 
magnetic fields. We deal with the states of the types (1 a )  and (1 b )  for arbitrary fields. 
Our present aim is not to attain an extrema1 precision, but to pay special attention to 
the qualitative aspects of the problem. 

It is remarkable that the problem attracts a considerable interest at present (Simola 
and Viztamo 1978, Kara and McDowell 1980, Ruder et al 1981, Patil 1981, Cohen 
and Hermann 1981) in view of its spectrum. Another important aspect of the subject 
is the discovery of an approximate integral of motion in this problem, that reveals a 
possiblity of an approximate classification of highly excited states (Zimmerman et a1 
1980, Robnik 1981, Solovyev 1981). 

The paper is organised as follows. In 9 3 we present a brief description of the 
“nonlinearisation method’ which is a basis for our approach. The Zeeman effect is 
discussed in 5 4. 

The case of arbitrary constant magnetic fields is concerned in 8 5 ,  the results 
calculated for highly excited states are presented; the level crossover is subject to a 
special discussion. Section 6 contains conclusions. 
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3. The method 

The problem to be investigated is the Coulomb system perturbed by a multipole 
interaction. The problem will be considered from two points of view: the perturbation 
theory in the field intensity is applied to the region of small fields, and the case of 
arbitrary field is investigated by means of a convergent perturbational approach. The 
method enabling one to look at the problem from both sides was developed previously 
and is based upon a "nonlinearisation" procedure (Turbiner l979,1980,1981a, 1982). 
In the framework of this method the conventional PT expansion in the field is a purely 
algebraical routine: some simple recursive relations are to be solved (Turbiner 1981b). 

Recall the idea of the method. Write the wavefunction in the form 

+ ( X I  = f ( x )  exd-4(x) l  (2) 

assuming that the functions f and 4 have no singularities in the real space Rk, where 
k is the dimensionality of the configuration space. Of course, the representation (2) 
is not unambiguous. In order to fix the decomposition we require that the variation 
of f be minimal in a sense: it must contain only information on the nodal surfaces of 
the wavefunction. The exact meaning of this requirement will be elucidated in the 
following. 

Put the wavefunction (2) into the Schrodinger equation 

A$+(,!?-  V)+=O. (3) 

A 4 - ( V 4 ) ' + ( 2 V + V f - A f ) / f = E -  V. (4) 

The result is the following nonlinear equation 

The PT expansions will be written on the basis of this equation. Suppose the potential 
is 

V =  Vo+AV, ( 5 )  

where A is a parameter. The functions f and 4, and the energy eigenvalue E are 
represented by formal series in A :  

cc m m 

E = c An&. (6a, b, c )  
n=O 

f = c A"fn 
f l = O  

4 =  c A " 4 n  
n =O 

For the nth term of the series we get a linear equation (Turbiner 1980, 1982), - 
A 4 n  - 2 V 4 0 V 4 n  + (2VfoV4n - Afn + 2VCboVfn )/fo = E n  - Qn (7) 

where 6, = V,; a general expression for 6, was given in (Turbiner 1979,1980,1982), 
it is not written here explicitly because it is rather cumbersome. Any reader can 
reconstruct it easily, it is written in terms of preceding terms of the expansions. In 
particular, if the position of the nodal surfaces is known a priori owing to some 
arguments, so that fn = 0 for n 2 1, then 

Note that dn plays the role of the perturbation potential, sinte the problemJor the 
nth correction is identical to that for the first correction with Qn in place of Q1 = VI. 



862 A V Turbiner 

The boundary condition for the equation (7) is 

l * 3 v n l - - *  0 at 1x1 +CO (9) 

where qb0 is the unperturbed wavefunction. In view of this condition, any correction 
to the energy is (cf Turbiner 1979, 1980, 1981a, 1982) 

Some details relevant to deformations of the nodal surfaces, f,,, may be found in 
Turbiner (1982); this aspect is beyond the purpose of the present work. 

A theorem on the algebraisation was formulated in Turbiner (1981b) and its proof 
given in Turbiner (1982)T. 

Theorem. If Vo is the Coulomb interaction potential, and VI is a perturbation containing 
a finite number of spherical harmonics with coefficients which are polynomials$ in r, 
then the PT procedure in the present method is purely algebraical: some simple recursive 
relations are to be solved. 

This theorem will be used in P 4, where the PT expansion in the field is constructed. 
Now we are in a position to approach physical problems. Some information on 
converging PT expansions and the relation to the variational principle will be given in 
Q 5 .  

4. Hydrogen atom in weak fields. The Zeeman effect 

Let us consider hydrogen atom in a weak magnetic field in the case of the states ( l a ) ,  
(1 b). We shall calculate the corrections up to X 6  inclusive. It is a platitude to say 
that at small fields the energy shift is linear in the field (the linear Zeeman effect). It 
is not clear, however, what is the domain of small fields. We shall show that with 
increase in the excitation of the atom the domain where the linear Zeeman effect does 
work, as well as the PT in the whole, is sharply shrinking. In fact we shall elucidate 
the meaning of the term ‘weak field’. 

It was mentioned in the introduction that no classification scheme is known for 
states of the system under review. Therefore we restrict ourselves to the non-mixing 
states, specified by the Coulomb quantum numbers ( l a ) ,  (16). Note also that the 
construction of the standard Rayleigh-Schrodiner PT is rather complicated from the 
technical point of view (a discussion is given in Garstang (1977)), both in the calculation 
of the transition matrix elements and in the calculation of sums over the intermediate 
states. Such complications do not arise in the present approach, and the matrix elements 
are calculated by means of a simple algebra (see below). 

The Hamiltonian operator describing the spinless hydrogen atom in a constant 
magnetic field is well known, 

H = -Vf  - 2 / r +  yf, +;y2r2 (  1 - p2)  (11) 
where r, 0, cp are the spherical coordinates, p =cos 8, f ,  is the z-component of the 

t An analogous statement for the ground state and a special form of the potential V, was given in Au and 
Aharonov (1980). 
$ It is assumed also that the coefficient of the Ith harmonics contains powers of r, which are  not less than I. 
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angular momentum operator, the z-axis is directed along the magnetic field X, y =  
p B X /  R is a dimensionless parameter characterising the field strength, pB is the Bohr 
magneton, and R is the Rydberg constant. Since the z-projection of the angular 
momentum is an integral of the motion, fz$ = m+ and the term ( r m )  appears, describing 
the linear Zeeman effect, that may be at once added to the energy, and the remaining 
problem is that of the quadratic effect. 

The perturbation potential is 

V, = ay2?( 1 - 11'). ( 1 2 )  

The Coulomb wavefunction describing the unperturbed system, for the states in the 
families ( l a ) ,  ( l b ) ,  is 

$ o = r ' y i m ( e ,  CP) exp(-ar) (13) 

where Y,,(O, cp) is the spherical harmonics in the standard normalisation (Erdelyi 
1953) ,  a = 1/N,  where N is the principal quantum number. Thus, we have in (6a)  
and (6b)  

40 = ar, fo = r ' Y l m  ( 6, 1 (13') 

Eo=-aZ. ( 1  3") 

while the Coulomb energy is 

The PT parameter is A = y 2 .  

n in ( I - + ' ) ,  so 
It is easy to see that the nth term is the series for 4 is a polynomial of degree 

n 
4,, = R t n ) ( r ) ( l - p 2 ) i .  

i=O 

Clearly, the pre-exponential factor is not affected by the perturbation, so that 

f n  = 0 for n 2 1. ( 1 5 )  
Now the equation (7)  is 

and 6, = Q, of equation (8), 

m=*l 
m = * ( l -  1 ) .  

k = ( 1  - !mi)  = 

Substituting 4,, in (16) by the polynomial (14) one gets equations for the coefficient 
functions 

- 2i(2i+lml) 
= coef (l-p2)e{En - 0,) - R g ; ,  r2 
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It is evident from the boundary conditions that R i ( n )  are polynomials of a degree no 
more than (2n + l ) ,  and analysing the recursive relations resulting from (17) one gets 
the following expression 

2 n + l  

]=max{2,2i} 
Ri"' (r )=  air! 

Thus the coefficient R , ( n )  at the highest degree (1 -p2 )"  contains only two terms, 
the coefficient at (1-~')"- '  has four terms, etc. Note that the function R , ( n )  is 
independent of k. 

Exploiting the recursive relations we start from R , ( n ) ,  then calculate R , - l ( n )  etc. 
An explicit form is available for R , ( n ) ,  

It follows from equations ( 1  7) that the coefficient at the higher term for an arbitrary 
correction, r2"+' ,  is independent of the level quantum numberst, and the coefficient 
at r2n is independent of the angular momentum projection m. A dependence on m 
appears only in the coefficient at rZn-' ,  and lower. For example, we present here the 
highest coefficient in Rn-'( n ) ,  

Next coefficients in R,,-](  n), as well as in the functions Rn-2( n ) ,  Rn-3( n ) ,  . . . , can be 
calculated subsequently, but the results become more and more cumbersome. Note 
that the procedure can not be completed in a reasonable manner; e.g. the coefficient 
at the term rZntl  in the first coefficient R l ( n )  can not be written in a closed form. 
This fact is proven accurately. The coefficient at 

Now let us discuss a remarkable fact. It is known that the FT series in the field 
powers (6) are divergent, while the Bore1 summation leads to a correct result$ (cf 
Avron er a1 1977). Consider the series ( 6 a )  and sum up the terms with highest powers 
of r in every 4". It is easily seen that the series over the highest terms is converging 
(see in Turbiner 1979, 1980). For instance, the sum (6a)  of the terms with the highest 
powers in r and (1 - p 2 )  is 

in Ro(n)  is zero exactly. 

Note a resemblance between # and the exact function: at small r it is the same as in 
the pure Coulomb problem 4 + ar, while for large r an: small t it apprsaches the 
function for the two-dimensional harmonica1 oscillator, 4 + y ( x 2  + y 2 ) / 2 J 3 .  

It is not difficult to  calculate also the sum ( 6 a )  over the next-to-highest terms, the 
series are also converging. The divergence of the PT series ( 6 a )  manifests itself only 
in the terms with the lowest powers in r, the corresponding coefficients are related to 
the cofficients E, in the expansion of the energy. A similar situation is known in the 
quantum field theory in the leading-logarithm approximation: also in that case the 
sum over the main logarithms is converging, as well as several corrections, while the 
t It may be shown that this is valid for any state, not only for those specified by ( l a )  and ( l b ) .  
$ It is of importance here that no terms non-analytical in the field (like exp(-l/y)) are  present in the series 
(66 ) ,  and the sum is just fo. 
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series as a whole is usually diverging. In quantum field theory, as a rule, one needs a 
special and rather complicated investigation in order to decide what is the domain 
where the leading-logarithm approximation does work. As for the quantum mechanical 
problem, the Schrodinger equation is always at hand, so the situation is quite clear. 

One can show that the sum 
X 4, = C y2nr2n+1 coefy2n+l{4,,) 

n =0 

reproduces a number of properties of the true function. In particular 

while the sum 

is a small correction to 4, for any value of its arguments x, y ,  z. We discuss this aspect 
in more detail in 0 5, where the case of arbitrary fields is considered. 

Let us calculate the first terms of the PT series (6a)  and (6c).  The problem is to 
apply the recursive relations resulting from (17); it is a pure algebra and we were able 
to exploit a computer program? REDUCE-2. The final expression for the energy of 
states ( 1  a, b )  is 

E = - N - ' + y m + i y Z N 2 ( N + 1 ) ( N -  k ) -&y4N6(N+1)  

x [?!6N3 +WN2 +fgN-&- ('85 08N2 + 60 

+ hy6NI0(N + 1)[gN5 +mN4+3071N3 +3182N2 +yN 
N + g) k + ($N + g) k2] 

1080 108 1 3 5  

5 1 3 4 3 3 ~ 4  8626423 2785715 26985163 183107 
- (" 249480 N 3 + x N 2 + - N + m ) k  
+ (wN3 + wN2 + WN + g) k 2  - ($I" +gN +y) k3] + . . . (22) 

where N = I +  1 is the principal quantum number, and k is given in (16).  
Let us discuss the expression ( 2 2 ) .  In the case N = 1 (the ground state) it coincides 

with the standard results (e.g. Avron et a1 1979). However, for N = 2, 1 = 1 .  we have 
found a slight numerical discrepancy with Galindo and Pascual (1976). The coefficient 
at the term y2 for any N coincides with the known expression (see e.g. Garstang 
1977). We are not aware of PT coefficients for other states of the type ( l a ,  b ) ,  calculated 
elsewhere. 

A few comments on the general structure of arbitrary correction E,. The functional 
form of any term in the sum (6c) is 

E, = (-l)"'1N4"-2(N+ 1)P2n-1(N) (23) 
where P2n-l(N) is a polynomial of order (2n-1) ,  and its coefficient at N2n-1 is 
independent of the angular momentum projection, i.e. of k, and is positive. Note that 
the contribution from the quadratic Zeeman effect to the energy vanishes at the 
non-physical points N = 0, -1. The vanishing at N = 0 takes place also for any state, 

i The computations were performed by means of ES-1060 



866 A V Turbiner 

not only for those in ( l a ,  b) .  All corrections to the wavefunction also vanish at this 
point. Remarkably, a similar situation was found for the anharmonical oscillator, 
V( r )  = r2  + gr4, in d-dimensional configuration space; there are corrections vanish at 
d = -2 (see Dolgov and Popov 1978). In that case, an exact solution of the Schrodin- 
ger equation was found for the ground state at d = -2, and PT in the space dimensional- 
ity, i.e. in the number (d+2) ,  was attempted. Unfortunately, in the case considered 
no solution of the Schrodinger equation was found for N = 0. 

Consider a highly excited hydrogen atom, N >> 1. Then the series (22) is written as 
23 4 407 6 E =-Nf7N+;y2N4-37gjy N l o + m y  N16+. . .+(-)n+1~,y2"N6n-2 +. , . (24) 

where c, are some positive numbers, unknown at present. Analysis of asymptotics of 
the series (6c), carried out by Avron (1981), is of no use here, since the limits n- tm  
and N+m are not commutative. This is clear because the asymptotics of E,  is a 
polynomial in N of order ( 6 n  - 3), cf equation (23). What information can we extract 
from (22) and (24)? It is known that the coefficients of the series (22) increase as a 
factorial, so it has zero convergence radius (see Avron 1981, Avron et a1 1977, 1979, 
Kaschiev et a1 1980). Besides, in the case of highly excited states the coefficients of 
the PT series increase as a power of the principal quantum number. Therefore, the 
domain of the applicability of PT is shrinking rapidly with N. A simple estimate shows 
that for N >> 1, the domain of the perturbation theory is 

Thus for states with N >  30-40 even the standard laboratory fields of 2-4 Ta re  strong, 
PT is not applicable and the level energies are not known, because no numerical 
calculations were performed for N s 4 .  It is noteworthy that states with principal 
quantum numbers N s 60 are observed in laboratories by means of laser techniques; 
moreover, excitations with N S  400 were observed for hydrogen in outer space. 

The analysis of PT series, as it was shown in this section, is reduced to a simple 
algebra; the corrections up to y 6  were found. 

The obtained results indicate that in the case of highly excited states the domain 
of strong fields is relevant to the laboratory conditions and must therefore be investi- 
gated. 

5. Hydrogen atom in constant magnetic field (the case of arbitrary field) 

In 5 4 we have considered the case of small magnetic fields and shown that the domain 
of applicability of the conventional perturbation theory describing the behaviour of 
the hydrogen atom in the weak field depends substantially on the level of the atom 
excitation. The purpose of the present section is a non-standard approach to the 
spectral problem; we are going to deal with fields of arbitrary intensities. We restrict 
oursevles to the states ( l a ,  6 ) .  Actually, we shall carry out a correct variational 
calculation with an appropriate trial function and estimate the accuracy. 

Our approach to the problem is based upon three main arguments. (i) It is 
reasonable to apply a variant of the perturbation theory that does not require the 
knowledge of the whole spectrum of the unperturbed problem. (ii) In order to get a 
converging PT one should take the wavefunction of the zeroth approximation in such 
a way that the corresponding potential Vo would reproduce all the singularities of the 
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investigated potential V and its asymptotics. Then ‘Dyson’s argument’ would not lead 
to divergencies in the method. (iii) The result of any variational calculation may be 
considered as the first two terms of some perturbation theory. 

We will explain first the latter point. The result of a variational calculation with 
a normalised trial function is written as follows 

E,,, = $OH& = $oHo$o + $o(H - Ho) 40 = Eo + EI (26) 

where H is the Hamiltonian of the problem in view, and Ho is a Hamiltonian 
corresponding to the trial function, Ho = p 2  + Vo, where Vo- Eo = +bo, and El is 
the first perturbational correction with the perturbation potential VI = V- Vo. Thus 
the variational energy corresponds to the first and second terms of PT series in the 
deviation from the original potential. Calculating E2,  E3, .  . . (cf (6c)), one gets, on 
one hand, an estimate for the accuracy of the variation calculation, and, on the other 
hand, one has an iterative procedure for making the variational results more exact, 
provided that the PT series has a non-zero convergence radius. 

Now we turn to the second point and discuss the principle for a reasonable choice 
of the wavefunction for the zeroth approximation. Thus one gets a criterion for 
selection of trial functions for the variational calculations. 

Clearly, the wavefunction is characterised suitably by the corresponding potential. 
‘Dyson’s argument’ (Dyson 1952) (see also a discussion in Turbiner (1979, 1980, 
1981a, 1982) provides one with a criterion of convergence of PT series. In essence, 
one should deal with a perturbation potential which is less singular than the potential 
of the problem considered. So one should construct such a trial function +o that the 
corresponding potential V,, have as many properties of the original potential V as it 
is possible, in particular, its singularities and the asymptotics. The closer Vo is to V, 
the more exact will be the result. 

With all this in view we shall construct the wavefunction of the zeroth approximation. 
The corresponding potential must have the Coulomb behaviour at the origin and the 
asymptotics of the two-dimensional harmonica1 oscillator at large distances (see (1 1)). 
The simplest wavefunction satisfying these requirements and corresponding to the 
states (1 a, b )  is 

+o = r Y~,,, ( 8, c p )  exp[- a r /  N - $ y ( x 2  + y2)]. (27) 

V, = -2a / r+$y2(x2+  y2) + ( ay / iv ) (x2+  y2)/r (28) 

Eo=- a 2 / N 2 + y ( l m l + m + 1 )  (29) 

S J J  

The potential related to this function is 

and the energy is 

where a = 1. The choice of the wavefunction is rather successful, as the deviation of 
Vo from the original potential is small not only in the asymptotical regions but also 
in the intermediate space, and the deviation decreases with the number of the state 
investigated. Moreover, the energy (29) has the Coulomb limit at small fields, and 
approaches the Landau formula, describing the spectrum of electrons in constant 
magnetic field, in the region of large field strengths. 

The PT expansion will be developed in the deviation of the potential (27) from the 
true potential of the problem. The perturbation potential is 

V I =  V-Vo=-(y /N)rs in2  8. (30) 
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Dyson’s argument suggests that the expansion is converging because the perturbation 
potential is small as compared with the original potential in the regions r + 00 and 
r-0,  and the convergence is improved with rise of the principal quantum number. 
The first correction to the energy E ,  has the standard form of the averaged perturbation 
potential (see e.g. Landau and Lifshitz 1974) and it is reduced to 

El  =-- Y dr  r 2 N + 1  Sil d p (  1 -p2)P?m exp[-2r/N-$yr2( 1 - p 2 ) ]  
2 N  I N j ? d r r  j-] d p  P:, exp[-2r/N-$yr2(1-p2)] 

where Pl, is the associated Legendre polynomial or, equivalently, in terms of the 
single integrals, 

The sum E,+ El  has some properties of the true level energy: at small y it describes 
correctly the linear Zeeman effect, though the coefficient at y 2  is wrong by a factor 
of two; for y + o;, when the Coulomb term in the potential is inessential, the correct 
spectrum of electron in the constant magnetic field is reconstructed with corrections 
logarithmic in the field strength. The term El  contains a singularity at y2  = 0, and this 
is the reason why the PT series is diverging. As in the case of the anharmonic oscillator, 
there is a cut in the complex plane of y2,  from y 2 = 0  to -a. Avron (1981) has 
calculated the discontinuity at the cut in the limit y 2 +  -0, that was found to be 
exponentially small. The expression in (31) has also a cut along the negative semi-axis, 
and the discontinuity is exponentially small at y 2  + -0, but the pre-exponential factor 
differs from that obtained by Avron. 

Unfortunately, the expression for the energy E o + E l  also has some defects. Odd 
powers of y, that must be absent a priori, do appear in the power series for (31). We 
can prove that the odd powers are removed with account for next corrections E2,  E3 
etc. The expression contains no term -ln2 y, which is next to the leading term in the 
asymptotics, and the expansion starts from a term -In y for ( l a ) ,  and a constant for 
(1 b). This defect is also eliminated with account for higher corrections. Nevertheless, 
equations (29) and (31) provide with a rather accurate description of the spectrum 
for all y. Results of the calculations by means of these formulae are given in tables 1 
and 2 for the states with N = 1 , 2 , .  . . , 8  and non-negative projection of the angular 
momentum . It is seen that the field dependence of the energy becomes almost linear 
at strong fields, but none of the considered states does move to the continuous spectrum, 
i.e. their energy remains less than the energy of an unbound electron in the constant 
magnetic field. Table 1 contains also a comparison of our results with the calculations 
by other authors, and the agreement is satisfactory. The accuracy of the present results 
will be discussed in the following, here they are considered just as the variational 
results with the trial function (27). 

Equations (29) and (31) show the correspondence between the Coulomb states 
(small fields) and the states of the two-dimensinal harmonica1 oscillator (large fields, 
the Landau levels). There is a complete agreement with the correspondence scheme, 
presented in the review by Garstang (1977) for the first excited levels. The present 
approach enables one to obtain more general results. An evident result is that all 
lower components of the multiplets with m = -1, -1  + 1 go to the Landau zero zone, 
while the upper components leave for different Landau zones. Therefore various level 
crossovers take place. In particular, all the levels with m = -1, -( 1 - 1) with 1 k 2 (i.e. 
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N 3 3) cross the level 2 ~ + ~ ,  the levels with I3 3 (i.e. N 3 4) cross the levels 3d+z, 3d+l,  
the levels with 13 4 (i.e. N 3 5 )  cross the levels 4f+3, 4f+2 etc. The crossovers occur 
indeed, because the levels have different symmetry as the magnetic quantum number 
is conserved. Positions of the first crossovers are given in table 3. Note that the 
crossover of the levels 2 ~ + ~  and 3d-2 takes place at a field strength about lo8 G.  

Because the angular momentum projection is a conserved quantum number, there 
is an evident relation between the upper and lower components in the multiplets, 

(32) AEl,m = E,,,, - El,- , ,  = 2 ym 

that is valid for any field. This relation leads to another one, 

AEf,m =AEf, , , -AEf,m-l  = S + E , + S - E ,  = 2 ~  (33) 

where S+EI = E,,,, - E f , m - l  is the distance between the upper components, 6-Ef = 
El.- , ,+l -El,-m is the distance between the lower components for the states ( l a ,  b ) .  
Note that the RHS of (33) is independent of the principal quantum number N. These 
quantities are useful, probably, for identification of the spectral lines. It is seen at 
once from equations (29) and (31) what is the field dependence of the quantities 6+El, 
6-Ef: at small fields they are approximately equal, 6+EI = S-Ef,  since the splitting is 
proportional to the field strength, while with rising y one gets the inequality 6+EI > 
F E l ,  and S+Ef = 2y-  O(ln y ) .  This effect has been observed in an experiment (Ger- 
shenzon et al 1977), it is especially clear for the states with N = 2. A scheme of the 
level behaviour is shown in figure 1.  

The level behaviour at large magnitudes of the principal quantum number is also 
rather interesting. By means of equations (291, (31), one gets the asymptotics for 
y >> 1, for instance, for the extreme components m = * I ,  

EN = y(  I m 1 + m + 1) - ( 25’4/ e )  y-3’4N-7’4 + . . . (34) 

where e = 2.718. . . . Thus in the region of large N the level approaches rapidly the 
Landau behaviour, and it never does reach the continuous spectrum, as the correction 
to the Landau formula is negative. Note that the distance to the boundary of the 
continuous spectrum falls as a power of the quantum number, and the speed of 
approaching is higher for larger fields. One should have in mind also that the limits 
of strong fields and high excitations are not commutative. 

Let us discuss the accuracy of the results obtained. The first and second terms of 
the PT series have been used until now; the procedure is equivalent to the variational 
approach. We have supposed that the PT is converging, having in mind ‘Dyson’s 
argument’. So a calculation of E2 would provide us not only with another correction 

2 P . l  

(U 1 [b) 

Figure 1. Distance between upper and lower components of the multiplet as a function of 
the field strength for ( a )  small fields, and ( b )  large fields. 
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to the perturbational expansion, but also enables to estimate the accuracy of the 
variational calculation with the trial function (27). Recall the expression for the second 
correction to the energy, 

where 41 is the first correction to the exponential function (see (6a ) ) .  It is important 
that the second correction to the energy is always negative, so with two terms for the 
energy, E,+ El, we have an upper bound. 

In order to find one has to solve the differential equation 

V ( & v , )  = (El- Vl)& (35) 

which is like the equation of electrostatics with a variable dielectric permeability &. 
The boundary condition for the equation is 

I&V4, l  + o  at 1x1 +CO. 

Unfortunately, we have not succeeded in finding an analytical solution for this equation, 
so an approximation will be used. The asymptotics of the function 4, is easily found, 

4, - ~ ~ r * / 2 ( 2 ~ + 1 )  
r -0  

for intermediate values of r we take an interpolation function, having the correct 
asymptotics, 

4l = [ ~ , r ~ / 2 ( 2 ~ + 1 ) ] [ 1  + ~ , r / 2 ( 2 ~ + 1 ) ~ ( 1 - l / ~ l ) ] - ' .  (37) 
Putting this function into equation ( 3 9 ,  one sees that corrections to this approximate 
expression are small. Substituting (37) in E2, we estimate the second correction to 
the level energy. The calculation was performed for y = 1; it was found that the 
relative error of the results presented is about (see tables 1 and Z), by the order 
of magnitude. 

6. Conclusion 

We have investigated the behaviour of the energy levels and corrections to the 
wavefunctions for two sets of states of the hydrogen atom in a constant magnetic field 
in the case when the Coulomb classification of states remains applicable. The boundary 
of the weak field region was specified, and the domain of applicability of the perturbation 
theory was found. Corrections to the energy and to the wavefunctions of orders y4 
and y6 are found for the first time. Since the procedure expoited was purely algebraical, 
one can use special computer programs to calculate higher corrections analytically. 
One should have in mind, however, that it is hardly reasonable to calculate the 
corrections, as the PT series is asymptotical. 

An alternative method enables us to describe the region of arbitrary magnetic 
fields, provided that the non-relativistic approach is valid. Even with a simple trial 
function (27) we were able to get rather accurate results, and moreover, to study the 
problem analytically. Seemingly, it is clear in what manner one can modify the trial 
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function (27) in order to  get higher precisions. First, the calculation may be treated 
as a standard variational method, as it was done in fact in Rau and Spruch (1976), 
variating the parameter a in (27). 

One would not meet with trouble, since the above reasoning suggests that the PT 

series remains convergent, as a Coulomb term with a coefficient, less than that in the 
unperturbed potential, is added to the perturbation (30). Thus one can improve the 
accuracy appreciably (see table 4). Second, the exponential in (27) may be modified 
in such a way that, besides the correct asymptotics, the structure of the series in the 
powers of the field would be also correct (only even powers of the field would be 
present in the expansion, the functional correction at the term y 2  would be correct 
etc). For example, here is one of the :ii;iplcst modifications, 

(38) +o=r'Y,,(6, cp) exp(-[a2r2/N2+&y2(x2+y 2 ) 2 ] 1/2 }. 

Odd powers of the field are eliminated in this function. In turn, this function may be 
treated as a trial function in the variational method, looking for minimum in the 
parameter a (see table 4). 

Table 4. Energy of 1s level at y = 1 calculated by means of equations (27) and (38) without 
and with minimisation over parameter a. 

Equation (27) Equation (38) Kaschiev et al 

a = l  a = a m m  a = l  a = a m i n  

= 0.879 = 1.1359 

-0.6056 -0.6201 -0.6352 -0.6543 -0.6623 
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Note added in proof. After submitting the manuscript some new papers have appeared. In particular, (i) 
the ground state has been investigated in detail by Le Guillou and Zin-Justin (1983); (ii) the family of 
excited states other than ( l a ,  b )  has been studied by Friedrich (1982) and (iii) the state 'I; of the molecule 
H2 in a magnetic field of arbitrary strength was firstly considered by means of obvious modification of the 
wavefunction of zeroth approximation (27) and it was shown that two atoms repel at large distances in the 
presence of a magnetic field (Turbiner 1983). 
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